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Key Message points

Existing approaches to satellite manufacture and deployment are too expensive for
continuous climate monitoring from space, despite the economic importance of sucl
observations.

Cubesat®nable a vision for low cost monitoring of the Earth, coupled with
advanced sensor miniaturization.

Global leadership in climate science and expertise in small satellites, including
Cubesatsput the UK in a unique position to show the way for doing big science
constructed from small building blocks.

The world needs developedsystem that has sufficient capabilities to carry a
sciencepayload, maintain orbit for 3 yearppintableto around a degree.
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would be the first sustained climate observing system ever built from a constellation
of small satellites.



CubeSats

A Standard sizes
I 1U: 10cm x 10cm x 10cm
I 2U:20cmx 10cm X10cm
I 3U:30cmx 10cm XL0cm
I 6U,12Uetc (under study)

A Piggyback launch, or
deployed from ISS

A Cheap

Low cost means we can build up an
observing system as a constellation of
smaller parts. This has many advantages:

A Flexibility & Robustness

A Readily expanded

A New approached to
calibration

A Cost sharing &
partnerships



Examples of sensor miniaturization at JPL

RainCube- a 6Ucubesatweather radar
mapping precipitation with a sensitivity
that rivals NASA/JAXA >$100M GPM
radar. Engineering models of key sub
systems built and tested. The concept is
being readied for a proposal to NASA.

An IR spectrometer, proposed by JPL to
NASA for the 3l CubesaSpectREnission
and a key sensor f@pERBUses
advanced detector technology developed
for the Mars climate sounder.

RACEa JPL Multichannel microwave
radiometer of the type used in operational
weather observing systems. It occupies ~
1.5U, flies on a 3QubeSatlemo 2014.

Three example concepts of sensors that are mature and ready for demonstration. JPL instrument COsts are each a
order $3M
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Small imbalance at TOA drives climate changes
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Radiance trend

Ocean Heat Content (J)
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The spectral fingerprints of climate change
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energy budget slightly out of balance.

The oceans continue to take up this small amoun
heat.

Monitoring this small imbalance is a recognized a
an important need but a challenge.

The spectral fingerprints of climate change are
much larger, making identification of processes
much more obvious than they are in current
available broad spectrally integrated measuremer

At present the existing and proposed methods for
monitoring Earthare too expensive and cannot
practically offer a strategy for sustained
monitoring of the ERB. Furthermore no coarse
band strategy for monitoring the spectral fluxes
exists.



Future measurementsf ERB

A Recent developments:
A Low-cost smalkatellites
A Sensorminiaturization
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Future measurementsf ERB

A Recent developments:
A Low-cost smalkatellites
A Sensorminiaturization

A Constellation advantages:
A Improved diurnal coverage
a region
A Crosscalibration potential
A Expansion potential
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Simulated measurements in 1D
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